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In order to study the cause of rail corrugation in the tangential braking section near the metro
entrance, a transient rolling contact model of three-dimensional solid wheelset-track was
established by using the finite element software ABAQUS, and the corrugation phenomenon
was analyzed in the time-domain and frequency-domain based on the field measurement. The
results show that the unstable friction self-excited vibration of the wheelset-track system
is the fundamental cause of rail corrugation in the measured section, and it is precisely
because of the “saturated-unsaturated” periodic characteristic of the wheel-rail creep force
that ultimately promotes the formation of rail corrugation.
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1. Introduction

Rail corrugation is a kind of periodic wavy wear phenomenon occurring on the rail surface,
which is one of the most common rail diseases in metro lines (Wen, 2006). The research on
rail corrugation can be traced back to the last century, and formation mechanisms of different
types of rail corrugations are analyzed by theoretical methods, numerical simulation and field
tests. Due to different operation conditions of metro, the phenomena of rail corrugation are
different, and there is no unified and effective theory to explain the mechanisms of different rail
corrugations. The existence of rail corrugation will not only lead to aggravation of structural
vibration of the track and vehicle, deterioration of fastener damage and an increase of vehicle
running noise, but also will affect the riding comfort of passengers and service life of the track
and vehicle components (Li et al., 2013; Cai et al., 2019). In order to prevent and control rail
corrugation fundamentally, it is necessary to conduct a comprehensive investigation on the causes
of rail corrugation in combination with the actual situation of metro lines.

The phenomena of rail corrugation are very complex, so there are many publications on
the causes of rail corrugation around the world. Grassie and Kalousek (1993) summarized the
research situation of rail corrugation, divided generation mechanisms of rail corrugation into
wavelength-fixed and material damage mechanisms, and put forward the classification, causes
and countermeasures of rail corrugation based on the above mechanisms. After that, Grassie fur-
ther revised the classification and causes of rail corrugation proposed in the literature (Grassie,
2009), believing that all types of rail corrugations were caused by the frequency-fixed mechanism
rather than the wavelength-fixed mechanism. Wang and Wu (2020a,b) studied the influence of
vibration interference between multi wheels and a resilient track on rail corrugation. By com-
bining the time-domain model of a discrete support slab track, an unsteady two-dimensional
wheel-rail tangential contact model and a long-term wear model, the growth process of rail cor-
rugation under the interaction of the single wheel-rail and multi wheel-rail was simulated. The
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results showed that the low-frequency standing wave between wheels was the main cause of rail
corrugation, and the dependence of wavelength on the wheelbase constituted the wavelength-
-fixed characteristic of rail corrugation. Based on the vibration theory of the track structure
and combined with field investigation and measurement, Li et al. (2016) discussed the causes
of rail corrugation on the trapezoidal sleeper track, and analyzed the internal relationship be-
tween the inherent characteristics of the track structure and rail corrugation by using the finite
element model. The results indicated that the vertical and transverse bending vibrations of the
rail relative to the sleeper were easily caused by the reciprocating operation of vehicles, which
aggravated the wheel-rail stick-slip vibration and accelerated the formation and development of
rail corrugation. Li et al. (2017) studied the influence of vibration characteristics of a resilient
track system on rail corrugation formation by establishing the vehicle-track system dynamic
model, and considered that rail wear caused by transverse slipping between the wheel and rail
and vertical vibration of the track structure might be the main cause of rail corrugation. Liu et
al. (2015, 2016) investigated and tested the rail corrugation in the shear damper fastener section
of Beijing metro, and found that the wheel-rail resonance of 200-400 Hz was the main reason
of rail corrugation. Meantime, the measures to reduce the corrugation were put forward, such
as adding rubber pad in the shear damper fastener and installing a frequency modulation rail
damper on the rail waist. The test results illustrated that the above measures could effectively
control the development of rail corrugation. By establishing the three-dimensional solid finite
element model of the train wheelset-track coupling and combining with the modal test results
of the wheelset, Pan et al. (2020) found that the transverse bending vibration of the rail caused
by the wheelset transverse modal characteristics of 200-400 Hz under the condition of wheel-rail
coupling was one of the reasons for the formation of rail corrugation with the wavelength of
40-60mm in the measured section. Yao et al. (2018) studied generation of wear-type corrugation
in rail micro contact patch, put forward the micro wavelength-locked expansion mechanism, and
verified the mechanism through experiments. The publications (Wu et al., 2019, 2020a,b; Chen
et al., 2010, 2020; Cui et al., 2016, 2017, 2018, 2019) proposed the view that the friction self-
-excited vibration between the wheel and rail caused rail corrugation when the wheel-rail creep
force reached saturation. This view held that the friction self-excited vibration between the
wheel and rail caused the same frequency variation of wheel-rail normal force, and the friction
work between the wheel and rail would fluctuate periodically with the variation of the normal
force, which led to rail corrugation eventually. Besides, Kurzeck (2011) also put forward a similar
view.

Through literature investigation, it can be found that up to now, most of the publications on
rail corrugation are mainly carried out in the frequency-domain, while the analysis on the gen-
eration and evolution processes of rail corrugation in the time-domain is less. Some publications
only analyzed the time-domain dynamic responses of the wheel-rail system (or vehicle-track
system), and did not directly get the occurrence state of rail corrugation. Moreover, more im-
portantly, the time-domain dynamic responses of the wheel-rail system (or vehicle-track system)
are not directly related to the formation of rail corrugation (Wu et al., 2020a,b). Therefore, there
are still some deficiencies in the existing publications. Based on that, this paper takes the rail
corrugation on the Cologne egg fastener track in a tangential section near the entrance of a metro
line in Shanghai as the research object. Firstly, the characteristic wavelength and frequency of
rail corrugation are obtained by analyzing the measured data. Then, referring to the actual line
situation, the finite element software ABAQUS is used to establish a three-dimensional solid
wheelset-track transient rolling contact model and carry out the simulation. Finally, accord-
ing to the calculation results, the cause of rail corrugation is analyzed in the time-domain and
frequency-domain. Compared with the previous publications, the difference of this paper is that
the occurrence state of rail corrugation is reproduced in the time-domain, and the calculation
results are in good agreement with the field measurement.
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2. Methodology

2.1. Wheelset-track transient rolling contact model

The measured corrugation section of Cologne egg fastener track on the tangential line is lo-
cated near the entrance of the metro station. The motor cars of the running train in this section
are in the braking state, with a large creep force, and the wheels may slip. Referring to (Wang
and Lei, 2020), the finite element model of wheelset-track three-dimensional transient rolling
contact is established by using ABAQUS, as shown in Fig. 1, so as to simulate the vehicle-
-track system on the actual metro line. It should be noted that although (Wang and Lei, 2020)
and the current paper adopt the similar finite element method, the emphases of the two pa-
pers are completely different. Wang and Lei (2020) mainly studied dynamic characteristics of a
wheel-rail system under the excitation of corrugation, while this paper focuses on the formation
mechanism of corrugation. The wheel-rail interaction in the corrugation section belongs to the
category of high frequency, and the high frequency dynamic responses of the vehicle-track cou-
pling system mainly depend on the flexibility of the wheelset and track (Chaar and Berg, 2006),
so all above the components of the primary suspension of the vehicle system are simplified as
mass points connected with the axle through the primary suspension, as shown in Fig. 1a. A
schematic diagram of the wheelset-track finite element model is shown in Fig. 1b. The wheelset
model includes two wheels and one axle, and the track model includes the rail, fastener and track
slab. The primary suspension and fastener parts are simulated by spring-damper elements, and
the stiffness and damping in three directions can be considered. The supporting effect of the
foundation on the track structure is simulated by the grounding spring. In the wheelset-track
transient rolling contact model, the track length is 36m and the fastener spacing is 0.6m. The
relevant parameters of each component are shown in Table 1 (Lei and Wang, 2020; Lei et al.,
2019).

Fig. 1. Finite element model and mesh generation diagram: (a) model structure diagram, (b) finite
element model and mesh generation diagram

For the wheelset-track transient rolling contact model, both wheelset and rail are discretized
into 8-node hexahedral elements. The rail type is CHN60, the rail cant is 1:40, and the wheel
tread type is LM worn tread. The surface to surface contact algorithm based on the penalty
function is used to solve the contact behavior between the wheel and rail, and the coefficient of
friction is 0.4. In order to ensure the accuracy of the model solution and reduce the calculation
cost of the model as much as possible, an uneven mesh is used in the meshing of the wheel and
rail, that is, the mesh at the wheel-rail contact zone is fine (the element size is 2mm), which is
used to solve the wheel-rail contact, and the mesh away from the wheel-rail contact zone is coarse
(the element size is 100mm). The track slab is also simulated by 8-node hexahedral elements,
and the mesh size is 100mm. The total number of nodes and the total number of elements of
the wheelset-track transient rolling contact finite element model are 836.9 · 104 and 735.6 · 104,
respectively. The boundary conditions of the model are as follows: symmetrical constraints are
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Table 1. Parameters of each component of the model

Parameter Value

Sprung mass [kg] 8720

vehicle
primary
suspension

vertical stiffness [N/m] 1.3 · 106

transverse stiffness [N/m] 547 000
longitudinal stiffness [N/m] 547 000
vertical damping [Ns/m] 2400
transverse damping [Ns/m] 1500
longitudinal damping [Ns/m] 1500

Mass of wheelset [kg] 1420

material of
wheelset
and rail

elastic modulus [Pa] 2.059 · 1011

plastic modulus [Pa] 2.1 · 1010

yield strength [Pa] 800
density [kg/m3] 7800
Poisson’s ratio 0.3

fastener
part

vertical stiffness [MN/m] 12.07
transverse stiffness [MN/m] 7.58
longitudinal stiffness [MN/m] 7.58
vertical damping [Ns/m] 1 361
transverse damping [Ns/m] 974
longitudinal damping [Ns/m] 974

material of
track slab

elastic modulus [Pa] 3.25 · 1010

density [kg/m3] 2400
Poisson’s ratio 0.24

foundation
supporting stiffness [N/m] 1.7 · 108

supporting damping [Ns/m] 3.1 · 104

set at the z-direction of two ends of each rail and the track slab to reduce the influence of the
stress wave reflection on the calculation results; transverse constraints are set at the x-direction
of two sides of the track slab; no constraints are set at the wheelset. The gravity and the driving
force of the wheel axle are considered in the load application of the model.

2.2. Solution of the model

The instantaneous dynamic analysis is used to solve the model, which mainly includes explicit
time integration and implicit time integration. The difference between them lies in different ways
of solving node acceleration. The explicit time integration method solves the node acceleration
directly through node calculation, while the implicit time integration method uses an iterative
approach to solve equilibrium equations of the system. When the time increment is less than one
tenth of the vibration period of the system concerned, the implicit time integration algorithm can
obtain more reliable results (Cui et al., 2016). Therefore, the implicit solver ABAQUS/Standard
is selected to analyze dynamic responses of the wheel-rail system.

Since the implicit time integration method obtains the acceleration of the node at the end
of the incremental step by solving the equilibrium equations of the system, the method is un-
conditionally stable. In the process of transient dynamic analysis of the wheel-rail system, the
frequency of rail corrugation is generally in the range of 20-1200 Hz, so the integral step-size is
set as 0.00005 s.
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2.3. Measured corrugation

According to the actual measurement of the metro line, the wavelength of rail corrugation on
the Cologne egg fastener track section is about 70-80mm, and the running speed of vehicles in
this section is about 50 km/h, so the corresponding characteristic frequency of rail corrugation
is about 174-198 Hz. The picture of corrugation on-site is shown in Fig. 2.

Fig. 2. Picture of corrugation on-site

3. Cause analysis of rail corrugation

3.1. Time-domain characteristic analysis

Referring to the actual line situation, the speed of the wheelset is set to be 50 km/h, the
movement time is set to be 0.8 s, and the initial position of wheel-rail contact is 12.4m away from
the rail end. The movement of the wheelset is driven by the rotation speed applied to the axle.
Because wear of the rail surface material is closely related to relative slipping of corresponding
nodes, that is, only when the nodes slip, the corresponding wear will occur. Therefore, this
Section first studies the phenomenon of rail surface slipping. Assuming that the rail surface is
smooth without any initial irregularity, the slipping zone distributions of left and right rails on
the Cologne egg fastener tangential track can be obtained through simulation and calculation,
as shown in Figs. 3 and 4.

Fig. 3. Distribution of the slipping zone in the tangential direction of the rail section: (a) left rail,
(b) right rail

It can be seen from Figs. 3 and 4 that in the process of the vehicle decelerating from the
initial operation state to the static state near the entrance of the metro line, a quasi-periodic
slipping zone will occur in the contact surface between the wheel and rail, including the tangential
direction of the rail section and the vertical direction of the rail section (the direction of wheelset
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Fig. 4. Distribution of the slipping zone in the vertical direction of the rail section: (a) left rail,
(b) right rail

movement), and the nephograms of slipping zones show the characteristics of large slipping in
the center and small slipping around. It can be seen that the wear in the center of the slipping
zone is larger than that in the surrounding zone, and the wear appears periodically, which is
very similar to the phenomenon of rail corrugation on the measured line. At the same time, the
distance between the centers of slipping zones is about 80mm, which is close to the wavelength
range of 70-80mm of the measured corrugation. On one hand, the calculation results directly
verify the rationality and effectiveness of the finite element model of wheelset-track transient
rolling contact in the time-domain. On the other hand, it also reflects that the formation of
rail corrugation is caused by the periodic appearance of slipping zones of the wheel-rail contact
surface. In order to further study the formation mechanism of rail corrugation, the cause of the
periodic appearance of slipping zones are analyzed in detail in the following.

The existence of the slipping zone indicates that there is wheel slipping in the process of
wheelset movement. When the wheel slips, the wheel-rail creep force will reach saturation. The
publications (Wu et al., 2019, 2020a,b; Chen et al., 2010, 2020; Cui et al., 2016; Cui et al.,
2017, 2018, 2019; Kurzeck, 2011) show that when the creep force between the wheel and rail
reaches saturation, the wheel-rail system will have unstable vibration, that is, friction self-
-excited vibration, which leads to generation of rail corrugation. In order to explore stability
of the wheel-rail system and better explain the rail corrugation phenomenon, the total energy
of the system in the process of wheelset movement is analyzed, and the corresponding total
energy output curve of the system is shown in Fig. 5. The analysis indicates that the energy of
the wheelset-track system will fluctuate continuously during the vehicle braking process, which
illustrates that the wheel-rail system is in an unstable state, that is, the wheel-rail system
exhibiys unstable vibration in this process. Combined with the above publications, it can be
seen that friction self-excited vibration of the wheelset-track system is the fundamental cause of
rail corrugation in the measured section. In addition, different from the publications mentioned
above, the wheel-rail creep force in this paper is not always in the saturated state at the vehicle
braking stage, but presents a “saturated-unsaturated” periodic state, that is, the wheel is in
a “slipping-rolling” periodic alternating state. The authors of this paper think that it is the
“saturated-unsaturated” periodic characteristic of wheel-rail creep force that finally promotes
the formation of rail corrugation. The reason why the wheel-rail creep force always remains
saturated in the analysis included in the above publications may be related to the rigid wheel-
-rail (vehicle-track) model chosen.

Furthermore, in order to analyze the stress condition of the slipping zone, the determined
node in the slipping zone is selected for research. The transverse and longitudinal friction shear
stresses are shown in Fig. 6, in which the transverse direction represents the tangential direction
of the rail section, and the longitudinal direction represents the vertical direction of the rail
section (the direction of wheelset movement). It can be seen from Fig. 6 that when the wheel
runs through the determined node, the friction shear stress curve presents large mutation. It is
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Fig. 5. Total energy output variation curve of the system

considered that the sharp increase of friction shear stress results in a large amount of slipping at
the node, which eventually leads to an increase of wear. Meantime, according to Fig. 6, it can be
seen that the longitudinal friction shear stress is much greater than the transverse friction shear
stress, which is similar to the nephogram distribution of slipping zones shown in Fig. 4. This is
mainly due to the line type. In actual operation, the wheel-rail transverse force on the tangential
line is relatively small, while the longitudinal force is relatively large to provide braking.

Fig. 6. Friction shear stresses: (a) transverse friction shear stress, (b) longitudinal friction shear stress

In order to comprehensively study the rail corrugation phenomenon, this Section also an-
alyzes the time-domain dynamic responses of the wheel-rail system, and selects the vertical
vibration accelerations of the determined nodes of the rail and wheel as the output variables.
The corresponding variation curves are shown in Fig. 7. It can be seen from Fig. 7a that the re-
sponse amplitudes of the rail vertical vibration acceleration reach the maximum when the wheel
passes through the determined node, and the response amplitude of the rail vertical vibration
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acceleration at this time is much larger than that at other times. It can be seen from Fig. 7b
that the wheel vertical vibration acceleration vibrates unsteadily at the braking stage, and the
amplitudes of the oscillation are relatively large, which is similar to the variation trend of the
total energy output curve of the system shown in Fig. 5, indicating that the unstable self-excited
vibration of the wheel occurs during the braking process, and the unstable self-excited vibration
eventually leads to the formation of rail corrugation.

Fig. 7. Time-domain curves of vertical vibration accelerations: (a) rail vertical vibration acceleration,
(b) wheel vertical vibration acceleration

3.2. Analysis of frequency-domain characteristics

The frequency-domain characteristics of dynamic responses of the wheel-rail system are
analyzed through the frequency-spectrum transformation for the time-domain curves of verti-
cal vibration accelerations of the rail and wheel as shown in Section 3.1. The corresponding
frequency-domain curves of vertical vibration accelerations are shown in Fig. 8. It can be seen

Fig. 8. Frequency-domain curves of vertical vibration accelerations: (a) rail vertical vibration
acceleration, (b) wheel vertical vibration acceleration

that the vertical vibration acceleration levels of the rail and wheel show a peak region in the
frequency range of 160-230 Hz, which indicates that the resonance phenomenon of the wheel and
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rail may appear in the above frequency range, resulting in an increase of dynamic responses
of the wheel-rail system. Meanwhile, the above frequency range is close to the characteristic
frequency range of the field measured corrugation, which is 174-198 Hz. Combined with the
time-domain analysis, it can be further explained that the generation of rail corrugation is the
wheel-rail resonance caused by the friction self-excited vibration of the wheelset-track system,
and the rationality and validity of the model are also verified from the frequency-domain.

4. Conclusions

Taking the rail corrugation on the Cologne egg fastener tangential track near the entrance of a
metro line in Shanghai as the research object, a three-dimensional solid wheelset-track transient
rolling contact model is established by using the finite element software ABAQUS. Combined
with the measured rail corrugation, the cause of rail corrugation is analyzed in the time-domain
and frequency-domain, and the following conclusions can be drawn:

• In the process of vehicle braking, the quasi-periodic slipping zone will appear in the contact
surface between the wheel and rail. It is found that the distance between the centers of
slipping zones is close to the wavelength range of the measured corrugation, which reflects
that the formation of rail corrugation is caused by the periodic appearance of slipping
zones of the wheel-rail contact surface.

• The energy of the wheel-rail system will fluctuate continuously during the vehicle braking
stage. Combined with the wheel-rail slipping analysis, it can be seen that the unstable
friction self-excited vibration of the wheelset-track system is the fundamental cause of
rail corrugation in the measured section, and it is precisely because of the “saturated-
-unsaturated” periodic characteristic of the wheel-rail creep force that finally forms rail
corrugation.

• The results show that the vertical vibration acceleration levels of the rail and wheel have
a peak region in the frequency range of 160-230 Hz, and the frequency range is close to the
characteristic frequency range of 174-198 Hz of the measured corrugation, which further
illustrates that rail corrugation is caused by the wheel-rail resonance induced by the friction
self-excited vibration of the wheelset-track system.
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